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Abstract

Analysis of fish movements has been an important area of study for fisheries ecology and

population dynamics for decades. Pacific sardine, Sardinops sagax, along the west coast of

the United States exhibit a well-defined large-scale seasonal migration. Larger and older

fish are found in the northern reaches of their range during summer and contract to southerly

offshore areas for spawning during spring. Because of the close correlation between fish

size and age it has not yet been determined if movements are size- or age-based. Measur-

ing spatial changes in the age structure conditioned on individual lengths was used to deter-

mine the roles of age versus length in the seasonal migration. S. sagax have a pattern of

increasing age-at-length with seasonal northward movements and offshore movements

for spawning. The pattern of increasing age-at-length with distance from the origin elimi-

nates a solely length-based process of movement and supports age-based movement. Pat-

terns in the size and age when fish first show migratory behaviors, coupled with the patterns

observed during the spawning season, support a hypothesis that migratory behaviors are

linked to age-based ontogenetic changes associated with maturation.

Introduction

Fish movements and large-scale migrations are one of the most studied aspects of fisheries

biology and ecology. Research has focused on descriptions of individual population migratory

patterns [1, 2], environmental cues [2–4], methods of identifying pathways [5], and the evolu-

tionary advantages of migratory behaviors [6]. Fish movement has been characterized as either

small-scale and within habitat movement or large-scale and between habitat migration. Within

habitat movement is thought to be a response to changing habitat conditions while large-scale

movements are related to environmental conditions as well as adaptive behaviors such as feed-

ing and ontogenetic changes, particularly reproduction [7].
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While patterns and physical cues for movement have been well described for many migra-

tory populations, the relative roles that the related biological processes of size and age play in

migration is not as clear. The arguments for size-based migration involve the energetic costs

and physical capacity of large and small fish to move, favoring larger fish for large-scale migra-

tions [8, 9]. Age-based movements could be related to age-specific maturation and learned

behaviors regarding schooling, optimal foraging, and spawning locations. For some species,

such as Atlantic cod, Gadus morhua, there are multiple groups within a population which dis-

play different migratory patterns hypothesized to have been learned from older fish [10–12].

MacCall [13] concluded that the loss of “migratory knowledge” within a population could

cause a change in fitness leading to stock decline.

Three discrete subpopulations of S. sagax, occur off the west coast of North America from

Alaska to Baja California, Mexico [14–17]. The northern subpopulation is typically found

from northern Baja California to British Columbia, Canada and spawns in a discrete unit off

southern and central California in offshore waters [17]. The migratory pattern of the northern

subpopulation of S. sagax in the California Current Ecosystem is well defined [18, 19]. Initial

studies of S. sagax movement patterns off California date back to an expansive tagging pro-

gram started in the mid-1930s which revealed that sardine movement occurs seasonally north-

ward and subsequently returning southward along the west coast of North America [20–23].

Clark and Marr [24] noted that northward movement occurred in summer whereas southward

movement most often occurred in the winter. Recent work has focused on the oceanic cues for

the onset of seasonal migrations [19, 25–34]. Similarly, oceanic conditions have been used to

identify subpopulations in regions of mixing [31–33, 35].

The current migratory theory is that S. sagax move in response to changes in oceanic condi-

tions related to shifts in the location of suitable feeding and spawning habitat. In spring, sardine

spawn in the offshore waters of southern and central California and subsequently disperse

northward from California to Canada compressed longitudinally along the coast [19]. While the

exogenous factors influencing movement have been studied, the biological processes responsible

are not well understood. S. sagax migration has been linked to both size and age [36]. Because of

the close correlation between fish size and age [37], it is unresolved whether initiation of sea-

sonal movement is determined by length-based [9] or age-based [38] biological processes.

The implications of age- versus length-based movement go beyond ecological questions,

but are important considerations for the applied assessment of exploited populations. Fisheries

demographic analyses (i.e. stock assessments) often convert observed length composition data

to catch-at-age using a length-at-age relationship [39]. However, age-based movements invali-

date the use of a simple age-length transition matrix as the age distribution associated with a

length-class depends on geographic area, season and the rate of age-based movement. Unbi-

ased assessment model estimates of biomass will depend on incorporating the process of

movement with the correct structure (age or length).

Despite decades of study and the importance of the question for assessing population

health, our understanding of the biological processes responsible for movement remains

incomplete. This paper attempts to build on past work by using a method of conditional analy-

sis to understand if the biological processes behind the movement and resulting spatial pat-

terns of the northern subpopulation of S. sagax are the result of size- or age- based movement.

Materials and Methods

Study area and seasonal strata

This study was designed around the current theory that a segment of the northern subpopula-

tion of S. sagax migrates northward along the coast after spawning and subsequently contracts
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southward to central and southern California. In spring, a segment of the subpopulation

migrates to offshore waters to spawn (Fig 1). Quarters 3 (July-September) and 4 (October-

December) represent the seasons of northward range expansion. Quarter 2 (April-June) repre-

sents the latitudinal contracted period with offshore spawning migrations.

Latitudinal range (Fig 1) was divided into four discrete areas: 1) southern California (SCA,

latitude: 33˚15’ to 34˚30’N), 2) central California (CCA, latitude: 36˚27’N to 37˚06’N), 3) the

Columbia River basin at the border of Oregon and Washington (ORWA, latitude: 44˚54’N to

48˚15’N), and 4) Canada (CANADA, latitude: 48˚15’N to 51˚48’N). Discrete boundaries are

used because fisheries data are collected by port and not by fishing locations. Longitudinal

(onshore-offshore) areas are defined as: 1) offshore SCA (longitude: west of 120˚15’W), 2) off-

shore CCA (west of 122˚18’W), and 3) onshore areas are found eastward. Both the SCA and

Fig 1. Range of the northern subpopulation of S. sagax with hypothesized migrations and study

areas noted. Study areas: SCA onshore (southernmost white box with diagonal lines), SCA offshore

(southernmost white box), CCA onshore (central white box with diagonal lines); CCA offshore (central white

box), ORWA onshore (white box with diagonal lines off of the northwestern United States), CANADA (white

box with diagonal lines off of Vancouver Island, British Columbia, Canada). Summer northward (green

polygon with diagonal lines) and spring offshore migrations (red line) are noted.

doi:10.1371/journal.pone.0166780.g001
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CCA were analyzed for offshore movement because the center of spawning potentially occurs

in either or both areas depending on the annual location of appropriate oceanic conditions.

Sample collection

The study relies on random samples of paired age and length measurements, which were taken

from both commercial fishery and trawl surveys. Commercial fisheries in all areas operated

onshore and therefore offshore samples during spawning were taken from the trawl survey

off of the United States which operates to the maximum limit of the offshore population

distribution.

Sample data were obtained directly from state and federal agencies including CDFW,

ODFW, WDFW, DFO, and NOAA. Commercial fishery samples were collected via state and

federal fishery monitoring programs that sample licensed commercial fishing vessels at the

ports. Trawl survey samples were collected under scientific research take permits obtained

from the above mentioned agencies.

SCA and CCA commercial samples. Pacific sardine were collected by the California

Department of Fish and Wildlife (CDFW) from southern and central California commercial

fishing ports. SCA ports included San Pedro, CA, Terminal Island, CA, and Ventura, CA,

while CCA ports included Monterey, CA and Moss Landing, CA. Biological information for

each fish, including standard length, weight, sex, and maturity, was recorded. Sagittal otoliths

were removed, cleaned, and stored dry.

Fish ages were determined following a standardized ageing method that was documented

by Yaremko [40]. Otolith pairs were submerged in a dish of distilled water and placed on a

black background sulcus side down. Otoliths were viewed with a stereomicroscope at 12-25x

magnification with reflected light. An annulus was defined as “the interface between an inner

translucent growth increment and the successive outer translucent growth increment”. Since

the majority of spawning is believed to occur during the summer, a July 1st birthdate was

assumed for all fish hatched during a calendar year. Therefore, for fish caught prior to the July

1st birthday, the most distal pair of opaque and translucent bands were not counted [40].

ORWA. Pacific sardine paired age-length samples collected by the Oregon Department of

Fish and Wildlife (ODFW) and the Washington Department of Fish and Wildlife (WDFW)

were used to characterize the Columbia River region. Samples were combined from both states

because the fisheries operate in the same area around the mouth of the Columbia River [41].

Catches are landed and sampled in the ports of Astoria, OR and Westport, WA. Biological

information and sagittal otoliths were collected similar to those described for SCA and CCA.

Fish ages were determined following the [40] standardized ageing method described above

with the following slight modifications: (1) otolith pairs were submerged in either distilled

water or ethanol, depending on reader preference; and (2) no birthdate assumption was made.

As such, the most distal pair of opaque and translucent bands were counted as annuli. Since

annuli counts were not adjusted for birthday, the annuli count was equal to the age of the fish.

For fish collected after July 1st assumed average birthday(start of quarter 3), this difference

with Yaremko [40] is expected to have no impact on age assignment.

Canada. Pacific sardine paired age-length samples collected from Canada’s Department

of Fisheries and Oceans (DFO) commercial and survey vessels were used to characterize the

most northward reaches of the summer range expansion. Samples were collected from the

United States and Canada border northward off of British Columbia, Canada. Biological infor-

mation and sagittal otoliths were collected and aged using methods similar to those described

for all other regions [42].
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Fishery-independent trawl survey. To aid in the evaluation of onshore-offshore patterns

of size and age, additional paired samples were taken from the Southwest Fisheries Science

Center/National Oceanic and Atmospheric Administration (SWFSC/NOAA) trawl surveys.

Biological information and sagittal otoliths were collected using the same methods as were

used for the fishery samples. Otoliths were aged in accordance with the assumption of a July

1st birthday for all fish [40].

Conditional analysis

The general theory of conditional analysis is an extension from the analytical treatment of

paired age-length data developed to estimate growth [38, 43, 44]. Because variability in the

age-length relationship is a part of the growth form, each age contains a distribution of lengths

associated with that age, and vice versa. Paired age-length samples can be analyzed by condi-

tioning the observed distribution of one measurement (age or length) on a discrete unit of the

other correlated measurement. Age- or length-based processes (sampling and biological) inter-

vening between sample collection and the entire population’s age or size structure will affect

the conditional distribution differently depending on: (1) the structure of the intervening pro-

cess (age- or length-based); and (2) whether the data is conditioned on age or length. In this

example, a solely length-based process of movement (higher proportion of fish moving with

increasing length) would not be expected to affect the age distribution at an individual length

(age conditioned on length) across the entire geographic range. However, if movements are

age-based (higher proportion of fish moving with increasing age), the age distribution for indi-

vidual lengths would be altered with distance from the origin. Similarly, a solely age-based pro-

cess of movement would not affect the observed length distribution at-age (length conditioned

on age) across geographic areas, but non-random length-based movement would affect the

length distribution at-age in successive areas.

The study used the mean age at-length or mean length at-age to characterize changes in the

distribution of ages or lengths by area. Bins with low sample sizes when conditioning on length

(�10 samples) or age (�20 samples) were removed to avoid small sample bias. Commercial

samples from 1981–2010 were used to examine north, south, and onshore areas. Trawl survey

samples (2004 to 2010) were used to characterize quarter 2 offshore areas of the SCA and

CCA. Detailed sample size information by age bin and length bin is provided in S1 and S2

Tables, respectively.

Generalized linear model

A generalized linear model (GLM) assuming a normal error distribution for age or length was

used. The estimated mean age or length is a linear function of fixed effects and interactions. A

step-wise GLM procedure was used to determine the set of systematic effects and interactions

that significantly explained the observed variability of ages or lengths using the Chi-square

test. The marginal mean age-at-length by area and marginal mean length-at-age by area were

calculated using least square means from the final model.

Mean age-at-length is represented by factors of year, length bin, area, and length and area

interaction as:

Ageijk ¼ mþ Yeari þ Lengthj þ Areak þ Lengthj � Areak þ εijk ð1Þ

where μ is overall mean, Year i is effect of year i, Lengthj is effect of length bin j, Areak is effect

of area k, Lengthj × Areak is interaction term between length bin j and area k, and εijk is error

term with Normal(0, σ2). For latitudinal movement i = 1981–2010, j = length bin 10–26 cm,
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k = SCA, CCA, ORWA, and CANADA. For onshore-offshore movement i = 2004–2010, j =

length bin 10–26 cm, k = Onshore and Offshore.

Mean length-at-age is represented by factors of year, age bin, area, and age and area interac-

tion as:

Lengthijk ¼ mþ Year i þ Agej þ Areak þ Agej � Areak þ εijk ð2Þ

where μ is overall mean, Year i is effect of year i, Agej is effect of age bin j, Areak is effect of area

k, Agej × Areak is interaction term between age bin j and area k, and εijk is error term with Nor-
mal(0, σ2). For latitudinal movement i = 1981–2010, j = age 0–12, k = SCA, CCA, ORWA, and

CANADA. For onshore-offshore movement i = 2004–2010, j = age 0–7, k = Onshore and

Offshore.

Results

Northward range expansion

S. sagax are both larger and older with increasing northward distance from SCA (Fig 2).

Observed mean age-at-length increased with northward distance from SCA (Fig 3). Model

prediction of mean age-at-length (Table 1) which accounted for year effects showed the same

pattern as the aggregated data (Fig 3). The pattern of increasing mean age-at-length begins at

18–20 cm which corresponds to fish that have reached age 2. The difference in mean age-at-

length between northern and southern areas is approximately 2 years at 20 cm and increases

with increasing length.

Fig 2. Boxplots of age and length by latitude during northern expansion for quarter 3 (July-September, 1981–2010) and quarter 4 (October-

December, 1981–2010) and onshore-offshore during spawning (quarter 2, 2004–2010). (A) Quarter 3 age by latitude; and (B) length by latitude

during the period of northern expansion. (C) Quarter 4 age by latitude; and (D) length by latitude during the period of northern expansion. (E) Quarter 2 age

by onshore-offshore; and (F) length by onshore-offshore during spawning in central and southern California. The horizontal line in the box represents the

mean, the box represents 25th and 75th percentiles, and the dots are outside 1.5 times the interquartile range above the upper quartile and below the

lower quartile.

doi:10.1371/journal.pone.0166780.g002
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Fig 3. Observed mean age-at-length and least-squares mean age-at-length for quarter 3 (July-September) and quarter 4 (October-December)

from 1981–2010. (A) Quarter 3 observed mean age-at-length; and (B) least-squares mean age-at-length for central California (CCA,●), the Columbia

River basin (ORWA, *), and Canada (CANADA,■); (C) Quarter 4 observed mean age-at-length; and (D) least-squares mean age-at-length for Southern

California (SCA,▲), central California (CCA,●), the Columbia River basin (ORWA, *), and Canada (CANADA,■) where the error bars in the upper

panels indicate the 95% confidence intervals of the observations and shaded areas in the lower panels represent 95% confidence intervals of the

predictions.

doi:10.1371/journal.pone.0166780.g003
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In contrast with age conditioned on length, mean length-at-age by area was not strongly

patterned with increasing northward distance (Fig 4). In particular, no obvious change to the

pattern of mean length-at-age by area with increasing age (Table 1, Fig 4).

Offshore movement during spawning

S. sagax are larger and older offshore in the SCA and CCA during the spawning season (Fig 2).

Model prediction of mean age-at-length (Table 1) which accounted for year effects showed the

same pattern as the data (Fig 5). The pattern of increasing mean age-at-length offshore was

Table 1. Analysis of deviance table for age-at-length and length-at-age from generalized linear models.

Quarter Factor SS Df F Pr (>F)

3 Response: Age

3 Year 7581 14 490.663 <0.0001

3 Length 21453 15 1295.883 <0.0001

3 Spatial 1782 2 807.233 <0.0001

3 Length:Spatial 430 17 22.945 <0.0001

3 Residuals 32960 29864

3 Response: Length

3 Year 23310 14 1141.651 <0.0001

3 Age 31158 12 1780.379 <0.0001

3 Spatial 5952 2 2040.536 <0.0001

3 Age:Spatial 547 11 34.075 <0.0001

3 Residuals 43630 29916

4 Response: Age

4 Year 1088.6 22 118.02 <0.0001

4 Length 5551.2 15 882.63 <0.0001

4 Spatial 430.2 3 341.97 <0.0001

4 Length:Spatial 249.5 29 20.52 <0.0001

4 Residuals 4862.9 11598

4 Response: Length

4 Year 14382.3 22 393.479 <0.0001

4 Age 22718.2 8 1709.226 <0.0001

4 Spatial 1157.4 3 232.213 <0.0001

4 Age:Spatial 745.6 12 37.399 <0.0001

4 Residuals 19277.7 11603

2 Response: Age

2 Year 135.33 6 71.3186 <0.0001

2 Length 1537.04 16 303.7497 <0.0001

2 Spatial 143.43 3 151.1762 <0.0001

2 Length:Spatial 30.83 22 4.4317 <0.0001

2 Residuals 1988.98 6289

2 Response: Length

2 Year 559 6 47.282 <0.0001

2 Age 9620.1 5 976.494 <0.0001

2 Spatial 917.2 3 155.174 <0.0001

2 Age:Spatial 685.7 8 43.504 <0.0001

2 Residuals 12474.1 6331

Quarters 3 and 4 capture the period of northern expansion while quarter 2 captures the period of spawning in central and southern California.

doi:10.1371/journal.pone.0166780.t001
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Fig 4. Observed mean length-at-age and least-squares mean length-at-age for quarter 3 (July-September) and quarter 4 (October-December)

from 1981–2010. (A) Quarter 3 observed mean length-at-age; and (B) least-squares mean length-at-age for central California (CCA,●), the Columbia

River basin (ORWA, *), and Canada (CANADA,■); (C) Quarter 4 observed mean length-at-age; and (D) least-squares mean length-at-age for Southern

California (SCA,▲), central California (CCA,●), the Columbia River basin (ORWA, *), and Canada (CANADA,■) where the error bars in the upper

panels indicate the 95% confidence intervals of the observations and shaded areas in the lower panels represent 95% confidence intervals of the

predictions.

doi:10.1371/journal.pone.0166780.g004
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Fig 5. Observed mean age-at-length and least-squares mean age-at-length for quarter 2 (April-June), 2004–

2010. (A) Observed mean age-at-length; and (B) least-squares mean age-at-length from the spawning areas of

Southern California onshore (▲), Southern California offshore (Δ), central California onshore (●) and central California

offshore (○), where the error bars in the upper panel indicate the 95% confidence intervals of the observations and

shaded areas in the bottom panel represent 95% confidence intervals of the predictions.

doi:10.1371/journal.pone.0166780.g005
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observed for all lengths, which is a subtle difference from that shown in the northward expan-

sion. An additional difference between spawning season (quarter 2) and quarters 3 and 4 was

that during the spawning season there was no difference in mean age-at-length between the

SCA and CCA (Fig 5).

In contrast with age conditioned on length, mean length-at-age was not strongly patterned

onshore-offshore (Fig 6). In particular, there was no obvious change to the pattern of mean

length-at-age by onshore-offshore with increasing age. Model predictions and data were simi-

lar (Table 1, Fig 6).

Discussion

The non-random patterns of mean age-at-length with increasing northward distance and

offshore is consistent with a hypothesis of a strong intervening age-based process lying

between the samples collected and the entire population age-structure. The most likely expla-

nation is an age-based movement underlying the seasonal migrations of S. sagax [18, 19].

This interpretation is strengthened as this difference in mean age-at-length between SCA

and CCA disappeared when the population contracted for spawning, indicative of mixing in

the onshore and offshore areas. There is little evidence for length-based movements, not

only because of the strong pattern when the data was conditioned on length, but the lack of

pattern when the paired samples were conditioned on age. It is reasonable to expect that if

movement was primarily controlled by a length-based process, a strong pattern of increasing

mean length-at-age would have been apparent. In general, all results for length conditioned

on age were far less clear, a result that would be expected with movement associated with age

and not length.

The benefits of conditioning age on length as a method for controlling the effects of

length-based sampling biases have been shown in studies estimating growth [38, 44, 45].

Fisheries analysis and population modelling has established that all removal methods have

selection patterns that are a combination of both gear selectivity and availability. Gear selec-

tivity (often called contact selectivity) is linked to capture probability typically based on fish

size [46] while the availability component of a selectivity pattern is a measure of what specific

segment of the total population’s age or size structure occurs in that spatial area. By account-

ing for length-based sampling biases, age conditioned on length controls for gear selectivity

while giving insights into age availability. It should be noted that conditioning on length

would not account for potentially confounding age-based behaviors that would make older

fish more vulnerable to gears in a systematic way that aliased movement. However, these

kinds of age-based behaviors would be atypical and require a pattern of behavior that seems

unlikely.

In contrast to conditioning age on length, conclusions drawn from examining mean length

conditioned on age is confounded by length-based processes. The effects of these length-based

sampling biases on estimates of mean length have been well documented in the fisheries litera-

ture [44, 47, 48]. Spatial, temporal, and even individual vessel variability in gear selectivity can-

not be discounted [38]. In addition, ecological differences in an individual unit of length (cm)

are far less meaningful than a unit of difference in age (years) as each year contains many

length units. Thus, conclusions drawn from area differences in mean length-at-age should be

treated with caution and considered weaker evidence than that of age conditioned on the

length. However, both lines of evidence present similar interpretations on the relative role of

age versus length in the observed migratory patterns.

This study cannot rule out all potential causes of the area patterns in the paired data

observed. Regional differences in exploitation levels with length-selective gears have been
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Fig 6. Observed mean length-at-age and least-squares mean length-at-age for quarter 2 (April-June, 2004–

2010). (A) Observed mean length-at-age; and (B) least-squares mean length-at-age from the spawning areas of

Southern California onshore (▲), Southern California offshore (Δ), central California onshore (●) and central California

offshore (○), where the error bars in the upper panel indicate the 95% confidence intervals of the observations and

shaded areas represent 95% confidence intervals of the predictions.

doi:10.1371/journal.pone.0166780.g006
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shown to alter regional size or age structure [49, 50]. However S. sagax are unlikely to incorpo-

rate a confounding cumulative regional effect due to the transient nature of the migratory fish.

Another consideration of this study includes the assumption that ageing methods used to age

all samples are equivalent. This assumption is likely reasonable given that ageing methods have

been standardized and discrepancies minimized though ageing workshops held between the

ageing laboratories [51]. Large differences in growth rates by region could also affect the

results, but those differences would have to be very large and directly connected to which fish

migrate to which areas each year. Finally, this work assumed a single migrating population.

The existence of subpopulation structure could compromise our results.

A definitive explanation of the ecological motivation for age-based movements is beyond

the scope of this paper, however a hypothesis that movements may be to be linked to the

ontogenetic process of maturation is reasonable. The best evidence for the potential role of

maturation as the biological cue for migration can be found in the offshore movements. In

offshore spawning habitat every length class observed consisted of older fish on average than

observed onshore. Considering that movement offshore is thought to be directly linked to

spawning [17], this pattern provides strongest evidence of age-based movement’s relation-

ship to maturation and spawning. S. sagax fully mature between the ages of 2–3 years [41]

which corresponds to the ages associated with the first latitudinal differences in mean age-

at-length identified in this study. The northward movement may not be directly linked to

spawning but more likely relates to optimal feeding habitat in preparation for spawning the

following spring. For simplicity of presentation, this paper combined male and female data,

but the same patterns of conditional means were found for each sex separately and so the

data were aggregated. This implies whatever the direct cause of age-based movement, it

affects both sexes’ behaviors similarly at the gross spatial scales examined. However this dis-

cussion regarding the motivation for age-based migrations, as of now, is speculative and fur-

ther research is warranted.

Conditional analysis of age-length pairs is another tool to understand the structure of the

biological processes controlling population demography. The data requirements for condi-

tional analysis are simple. However, the seasonal expansion-contraction movement patterns

explored in this work made interpretation of the results much clearer than other potential

movement patterns. With the discovery that movements are best explained as an age-based

process, the use of a spatially explicit assessment models with age-based movements or alterna-

tively modelling contact selectivity separate from age-based availability in single area models

should be considered. The same considerations equally apply to research on basic life history

parameters, such as growth and maturity, as estimates of these vital rates will be influenced by

an age-based nature of movement. Studies aimed at estimating population level statistics need

to be designed with consideration of the biological processes controlling spatial dynamics.
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